How to replenish potassium for hypokalemia

Written by Wang Li Bing
Intensive Care Medicine Department
Updated on August 31, 2024
00:00
00:00

After the occurrence of hypokalemia, we usually adopt oral potassium supplementation or intravenous potassium supplementation. Oral potassium supplementation is the safest method clinically, and patients can also be advised to consume potassium-rich fruits or vegetables, etc. On the other hand, there is intravenous potassium supplementation, which must be decided based on the patient's urine output. Generally, potassium supplementation can be carried out only when the patient's urine output is more than 500 milliliters per day. However, the concentration of potassium must be diluted and not administered undiluted to prevent arrhythmias and so on.

Other Voices

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
46sec home-news-image

The impact of hypokalemia on skeletal muscle

In clinical practice, hypokalemia can affect the muscular and nervous conduction systems. The most prominent symptoms of hypokalemia in the neuromuscular system are flaccid paralysis of the skeletal muscles, loss of tension in smooth muscles, and rhabdomyolysis. If the respiratory muscles are involved, it can lead to respiratory failure. Hypokalemia can also lead to insulin resistance, resulting in significantly abnormal glucose tolerance. If hypokalemia occurs clinically, it is crucial to actively treat the primary disease, appropriately supplement potassium, monitor during the supplementation process to avoid hyperkalemia, and closely monitor blood potassium levels with regular reviews.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
1min home-news-image

Clinical symptoms of hypokalemia

Hypokalemia has diverse clinical manifestations. The most life-threatening symptoms involve the cardiac conduction system and the neuromuscular system. In mild hypokalemia, the electrocardiogram (ECG) shows flattened T waves or their disappearance, along with the appearance of U waves. Severe hypokalemia can lead to lethal arrhythmias, such as ventricular tachycardia, ventricular fibrillation, or sudden death. In the neuromuscular system, the most prominent symptoms of hypokalemia are in the skeletal muscle, presenting as sluggish paralysis and loss of tone in the smooth muscle, leading to rhabdomyolysis. If respiratory muscles are affected, it may result in respiratory failure. Hypokalemia can also cause insulin resistance and obstruct insulin release, leading to significant glucose tolerance abnormalities. Decreased potassium excretion reduces the kidney's ability to concentrate urine, resulting in polyuria.

doctor image
home-news-image
Written by Gan Jun
Endocrinology
58sec home-news-image

What are the symptoms of hypokalemia?

When the body's blood potassium level falls below 3.5 millimoles per liter, it is called hypokalemia. Hypokalemia can cause adverse symptoms in multiple systems of the body, initially causing weakness and fatigue in the limbs, flaccid paralysis, sluggish and absent tendon reflexes, and in severe cases, respiratory difficulty. At the same time, hypokalemia can lead to a series of central nervous system damages, such as apathy, a blank stare, drowsiness, and confusion; it also causes nausea, poor appetite, abdominal distension, and intestinal paralysis among other adverse gastrointestinal phenomena. Additionally, it can lead to palpitations, and rapid atrial or ventricular arrhythmias, among other adverse phenomena. Therefore, it is crucial to provide timely and proper potassium supplementation and correction of blood potassium levels for patients with hypokalemia.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
50sec home-news-image

Causes of Hypokalemia

Common causes of hypokalemia include insufficient intake or prolonged inability to eat without intravenous supplementation. In such cases, while intake of potassium decreases, the kidneys continue to excrete potassium, leading to a loss of potassium in the blood. Additionally, increased excretion can cause hypokalemia, including losses from the gastrointestinal tract such as vomiting, diarrhea, and continuous gastrointestinal decompression, which results in a loss of digestive fluids rich in potassium. Potassium loss through the kidneys from prolonged use of potassium-wasting diuretics or during the polyuric phase of acute renal failure can also lead to hypokalemia. Furthermore, the shift of potassium from outside to inside the cells can cause hypokalemia.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
52sec home-news-image

What medicine should be taken for hypokalemia?

The treatment of hypokalemia primarily involves addressing the underlying disease. Symptomatic treatment should avoid excessive potassium supplementation, which can lead to hyperkalemia. The principle of potassium supplementation is as follows: for mild hypokalemia, such as in patients showing clinical signs, oral potassium can be administered at 40-80 millimoles per day. For patients with severe hypokalemia, or those whose gastrointestinal tract cannot utilize potassium, with potassium levels less than 2.0 millimoles per liter, intravenous potassium can be provided. An initial supplementation rate of 10-20 millimoles per hour is relatively safe. In cases of severe hypokalemia with life-threatening clinical signs, a rapid increase to 40-80 millimoles can be achieved in a short period, but close monitoring is necessary.