Causes of Hypokalemia

Written by Wei Shi Liang
Intensive Care Unit
Updated on September 13, 2024
00:00
00:00

Common causes of hypokalemia include insufficient intake or prolonged inability to eat without intravenous supplementation. In such cases, while intake of potassium decreases, the kidneys continue to excrete potassium, leading to a loss of potassium in the blood. Additionally, increased excretion can cause hypokalemia, including losses from the gastrointestinal tract such as vomiting, diarrhea, and continuous gastrointestinal decompression, which results in a loss of digestive fluids rich in potassium. Potassium loss through the kidneys from prolonged use of potassium-wasting diuretics or during the polyuric phase of acute renal failure can also lead to hypokalemia. Furthermore, the shift of potassium from outside to inside the cells can cause hypokalemia.

Other Voices

doctor image
home-news-image
Written by Chen Xie
Endocrinology
1min 35sec home-news-image

Hypokalemia is formed in what way?

Hypokalemia refers to a condition where the serum potassium level is below 3.5 millimoles per liter. The primary cause of hypokalemia is the loss of potassium in the body. Hypokalemia can be classified into three types based on its cause: potassium deficiency hypokalemia, redistributive hypokalemia, and dilutional hypokalemia. Potassium deficiency hypokalemia is mainly characterized by insufficient intake or excessive excretion. Insufficient intake is typically seen in patients who are fasting, have selective eating habits, or suffer from anorexia, while excessive excretion is mainly through gastrointestinal or renal loss of potassium. Redistributive hypokalemia usually occurs due to metabolic or respiratory alkalosis, the recovery phase of acidosis, heavy usage of glucose, instances of periodic paralysis, acute emergency situations, and the use of folic acid and vitamin B12 in treating anemia or repeat transfusions of cold stored washed red blood cells. Dilutional hypokalemia, on the other hand, is mainly caused by the retention of extracellular fluid, leading to excessive water or water intoxication-induced hypokalemia.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
1min 9sec home-news-image

Precautions for intravenous potassium supplementation in patients with hypokalemia

Patients with hypokalemia should closely monitor their blood potassium levels when receiving intravenous potassium supplementation, rechecking potassium levels within 1-4 hours after supplementation. Continuous electrocardiogram monitoring is necessary to closely observe any changes in the electrocardiogram and prevent life-threatening hyperkalemia. In patients with renal impairment, the potassium supplementation should be 50% of that for normal patients, and it is generally considered that the daily potassium supplementation should not exceed 100-200 mmol. For patients with severe hypokalemia, the total daily potassium supplementation can reach 240-400 mmol, but blood potassium levels should be closely monitored to prevent hyperkalemia. Peripheral administration of high-concentration potassium can irritate the vein wall, causing pain and phlebitis. Generally, it is considered that the rate of potassium supplementation through peripheral veins should not exceed 40 mmol/L.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
1min home-news-image

Clinical symptoms of hypokalemia

Hypokalemia has diverse clinical manifestations. The most life-threatening symptoms involve the cardiac conduction system and the neuromuscular system. In mild hypokalemia, the electrocardiogram (ECG) shows flattened T waves or their disappearance, along with the appearance of U waves. Severe hypokalemia can lead to lethal arrhythmias, such as ventricular tachycardia, ventricular fibrillation, or sudden death. In the neuromuscular system, the most prominent symptoms of hypokalemia are in the skeletal muscle, presenting as sluggish paralysis and loss of tone in the smooth muscle, leading to rhabdomyolysis. If respiratory muscles are affected, it may result in respiratory failure. Hypokalemia can also cause insulin resistance and obstruct insulin release, leading to significant glucose tolerance abnormalities. Decreased potassium excretion reduces the kidney's ability to concentrate urine, resulting in polyuria.

doctor image
home-news-image
Written by Wang Li Bing
Intensive Care Medicine Department
46sec home-news-image

Can hypokalemia be cured?

Hypokalemia is very common in clinical settings, and there are mainly two treatment methods. The first one is the oral administration of sustained-release potassium chloride tablets or oral potassium chloride solution. Patients can be advised to consume potassium-rich vegetables and fruits, etc. The second method is intravenous potassium supplementation, which has higher requirements. It is important to monitor the patient's urination; if urination is adequate, intravenous supplementation can proceed, but the concentration of potassium should not exceed 0.3%. After the occurrence of hypokalemia, it is crucial to actively search for the cause and provide symptomatic treatment. Generally, the prognosis for hypokalemia is good.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
1min 1sec home-news-image

Causes and Clinical Manifestations of Hypokalemia

Hypokalemia refers to a condition where blood potassium levels are below 3.5mmol/L. The causes can be due to inadequate intake of potassium, such as prolonged inability to eat without sufficient intravenous supplementation of potassium. It can also result from excessive loss of potassium, through external losses such as vomiting and diarrhea, or through renal losses due to the excessive use of diuretics and certain hormonal imbalances. A third cause involves the shift of potassium into cells, such as during episodes of alkalemia and periodic paralysis. Clinically, mild to moderate hypokalemia is characterized by symptoms like muscle weakness, fatigue, cramps, intestinal obstruction, and some abnormalities in electrocardiograms, including the presence of U waves and flattened T waves. Severe hypokalemia can lead to life-threatening arrhythmias, such as ventricular tachycardia and ventricular fibrillation, which require immediate treatment.