What medication is used for hyperkalemia?

Written by Yang Li
Endocrinology
Updated on March 24, 2025
00:00
00:00

Hyperkalemia is primarily treated by promoting diuresis to enhance the elimination of potassium, while calcium gluconate can also be administered intravenously to counteract the inhibitory effects of potassium on the heart. Additionally, concentrated glucose with insulin can be used to shift excess potassium ions from the blood. Sodium bicarbonate can also be used to alkalinize the blood's pH to help reduce potassium levels. All these treatments must be conducted safely. In cases of severe hyperkalemia, dialysis may be necessary. If arrhythmias, bradycardia, or myocardial depression occur, the installation of a temporary pacemaker, along with hemodialysis, may be required. (Medication should be administered under the guidance of a physician.)

Other Voices

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
42sec home-news-image

The effects of hyperkalemia on the body

Hyperkalemia affects the body mainly in three aspects. Firstly, hyperkalemia impacts muscle tissues, clinically manifesting as symptoms such as muscle tremors. Secondly, the effect of hyperkalemia on the heart primarily manifests as decreased excitability, conductivity, and automaticity of the myocardium. It affects electrocardiograms, characterized by a depressed P wave, widened QS wave, reduced R wave, and elevated T wave. Thirdly, hyperkalemia affects acid-base balance; during hyperkalemia, potassium efflux from cells can lead to metabolic acidosis, resulting in alkaline urine.

doctor image
home-news-image
Written by Chen Li Ping
Endocrinology
1min 13sec home-news-image

The Impact of Hyperkalemia on the Heart

Typically, when serum potassium exceeds 5.5 mmol/L, it is referred to as hyperkalemia. The manifestations of hyperkalemia on the cardiovascular system usually include bradycardia and arrhythmias, but generally do not lead to congestive heart failure. Sometimes, there may be cardiac enlargement and diminished heart sounds, with characteristic changes on an electrocardiogram. Finally, when serum potassium reaches 12 mmol/L, some parts of the myocardium may be excited and recover, while others have not yet depolarized, making it very easy to cause tachycardia, flutter, ventricular fibrillation, and even cardiac arrest, leading to death. Therefore, hyperkalemia is also a major cause of sudden cardiac death. Some patients with hyperkalemia may only exhibit arrhythmias and show no neuromuscular symptoms before death, thus a rapid diagnosis is crucial. The severity of hyperkalemia is generally assessed by both the measured serum potassium concentration and changes in the electrocardiogram.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
1min home-news-image

The impact of hyperkalemia on the heart

The effects of hyperkalemia on the heart mainly manifest in the following ways: First, it affects the excitability of the myocardium, as hyperkalemia can cause reduced or even absent myocardial excitability; second, it impacts myocardial conductivity. In hyperkalemia, due to the reduced resting potential, the amplitude and speed of the action potential's phase zero decrease, leading to slowed excitability spread and reduced conductivity; third, it influences the automaticity of the myocardium. In hyperkalemia, due to slowed automatic depolarization, the automaticity is reduced. Additionally, hyperkalemia produces characteristic changes in the electrocardiogram, such as depression or disappearance of the P wave, prolongation of the PR interval, widening of the S wave, and narrowing and peaking of the T wave, which are the main changes in the electrocardiogram due to hyperkalemia.

doctor image
home-news-image
Written by Chen Li Ping
Endocrinology
47sec home-news-image

Hyperkalemia

Typically, when serum potassium exceeds 5.5 mmol/L, it is referred to as hyperkalemia. However, an increase in serum potassium does not necessarily reflect an overall increase in body potassium; serum potassium can also rise when there is a deficiency of total body potassium. Therefore, in clinical practice, serum potassium is evaluated in conjunction with an electrocardiogram and medical history to determine if a patient has hyperkalemia. Hyperkalemia is an important emergency in internal medicine and can often lead to sudden cardiac arrest. It should be identified and prevented early.

doctor image
home-news-image
Written by Zhao Xin Lan
Endocrinology
46sec home-news-image

Clinical manifestations of hyperkalemia

The clinical manifestations of hyperkalemia are not specific. Early symptoms often include numbness in the limbs, sensory abnormalities, extreme fatigue, and muscle pain. In severe cases, there can be difficulties in swallowing, speaking, and breathing, paralysis of the limbs, and tendon reflexes may disappear. The central nervous system may show signs of restlessness, fainting, and confusion. Some may experience a slow heart rate, ventricular fibrillation, and in the most severe cases, it can lead to cardiac arrest. Other symptoms may include nausea, vomiting, diarrhea, and other gastrointestinal symptoms.