Principles of treatment for hyperkalemia

Written by Zhao Xin Lan
Endocrinology
Updated on December 10, 2024
00:00
00:00

First, to counteract the cardiac inhibitory effects of potassium, calcium salts can be injected, and sodium bicarbonate can be used to alkalinize the blood. Then, an infusion of hypertonic glucose and insulin can be administered to promote the internal movement of potassium ions. Secondly, to promote the excretion of potassium, diuretics can be used. The second method involves the use of cation exchange resins and sorbitol. The third method employs dialysis therapy, which can include both hemodialysis and peritoneal dialysis. The fourth method is to reduce the sources of potassium, stop a high potassium diet or the use of potassium-containing drugs. In cases of severe hyperkalemia, where there is a life-threatening emergency, urgent measures should be taken, primarily the intravenous administration of calcium ion antagonists to counteract the cardiac toxicity of potassium. In cases of severe arrhythmias or even cardiac arrest, emergency installation of a pacemaker or defibrillation can be carried out, and respiratory muscle paralysis may require ventilatory support. (Medication use should be under the guidance of a doctor)

Other Voices

doctor image
home-news-image
Written by Chen Li Ping
Endocrinology
1min 13sec home-news-image

The Impact of Hyperkalemia on the Heart

Typically, when serum potassium exceeds 5.5 mmol/L, it is referred to as hyperkalemia. The manifestations of hyperkalemia on the cardiovascular system usually include bradycardia and arrhythmias, but generally do not lead to congestive heart failure. Sometimes, there may be cardiac enlargement and diminished heart sounds, with characteristic changes on an electrocardiogram. Finally, when serum potassium reaches 12 mmol/L, some parts of the myocardium may be excited and recover, while others have not yet depolarized, making it very easy to cause tachycardia, flutter, ventricular fibrillation, and even cardiac arrest, leading to death. Therefore, hyperkalemia is also a major cause of sudden cardiac death. Some patients with hyperkalemia may only exhibit arrhythmias and show no neuromuscular symptoms before death, thus a rapid diagnosis is crucial. The severity of hyperkalemia is generally assessed by both the measured serum potassium concentration and changes in the electrocardiogram.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
1min 5sec home-news-image

Treatment of Hyperkalemia with Drugs

Hyperkalemia primarily affects the conduction of the heart and muscle nerves, with typical clinical manifestations including severe bradycardia, atrioventricular block, and even sinus arrest. Once hyperkalemia occurs clinically, immediate treatment should be administered. The first approach to treatment is promoting the excretion of potassium, using furosemide or other diuretics to increase renal potassium excretion, and taking a small dose of sodium polystyrene sulfonate orally to eliminate potassium. For life-threatening severe hyperkalemia, if serum potassium is greater than 6.5 mmol/L, hemodialysis treatment is necessary. The second aspect involves shifting potassium into cells, using calcium to alter cell excitability, which can protect the heart from the damage to the conduction system caused by hyperkalemia. Additionally, using glucose with insulin and administering sodium bicarbonate can be effective. It is important to note that all the above medications should be used under the guidance of a doctor.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
1min 12sec home-news-image

What kind of urine occurs with hyperkalemia?

Primary hyperkalemia often coincides with metabolic acidosis, and in hyperkalemia-induced metabolic acidosis, paradoxical alkaline urine can occur. Once hyperkalemia occurs, it primarily affects the conduction of the heart and neuromuscular system. Typical clinical manifestations include severe bradycardia, atrioventricular conduction block, and even sinus arrest. In mild hyperkalemia, the electrocardiogram shows peaked T-waves; as potassium levels continue to rise, the PR interval prolongs, T-waves disappear, QRS complex widens, and ultimately, cardiac arrest occurs. Immediate treatment should be administered upon diagnosis to promote the excretion of potassium, maximizing the renal excretion capacity with diuretics. If drug-induced potassium excretion does not normalize levels and serum potassium exceeds 6.5 mmol/L, hemodialysis may be necessary. Additionally, some drugs can be used to shift potassium into the cells and protect cardiac function. (The use of any medication should be under the guidance of a doctor.)

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
45sec home-news-image

How to rescue hyperkalemia

Hyperkalemia must be dealt with immediately once it occurs. The usual treatments in clinical settings include promoting potassium excretion using furosemide or other loop diuretics to maximize renal potassium excretion, or using oral or rectal potassium-eliminating agents. For life-threatening hyperkalemia with serum potassium levels greater than 6.5 mmol/L, hemodialysis is necessary. Another approach is to facilitate the shift of potassium into cells, which is done through the administration of insulin with glucose, or sodium bicarbonate along with calcium gluconate that helps protect the myocardium, thus providing treatment and protective measures for hyperkalemia.

doctor image
home-news-image
Written by Wang Li Bing
Intensive Care Medicine Department
42sec home-news-image

Treatment methods for hyperkalemia

In clinical practice, a blood potassium level greater than 5.5 millimoles per liter is referred to as hyperkalemia. Once hyperkalemia occurs, it must be actively managed: the first step is to stop using medications that increase blood potassium, such as sustained-release potassium chloride, potassium-sparing diuretics like spironolactone, and ACE inhibitors; the second step is to use calcium supplements to counteract the toxic effects of high potassium on the heart; the third step is to use hypertonic glucose with insulin and sodium bicarbonate to correct acidosis and promote the movement of potassium into the cells; the fourth step is to use the diuretic furosemide to help reduce blood potassium. If drug treatment is ineffective, bedside hemodialysis may be employed. (Use of the above medications should be under the guidance of a doctor.)