What kind of urine occurs with hyperkalemia?

Written by Wei Shi Liang
Intensive Care Unit
Updated on September 16, 2024
00:00
00:00

Primary hyperkalemia often coincides with metabolic acidosis, and in hyperkalemia-induced metabolic acidosis, paradoxical alkaline urine can occur. Once hyperkalemia occurs, it primarily affects the conduction of the heart and neuromuscular system. Typical clinical manifestations include severe bradycardia, atrioventricular conduction block, and even sinus arrest. In mild hyperkalemia, the electrocardiogram shows peaked T-waves; as potassium levels continue to rise, the PR interval prolongs, T-waves disappear, QRS complex widens, and ultimately, cardiac arrest occurs. Immediate treatment should be administered upon diagnosis to promote the excretion of potassium, maximizing the renal excretion capacity with diuretics. If drug-induced potassium excretion does not normalize levels and serum potassium exceeds 6.5 mmol/L, hemodialysis may be necessary. Additionally, some drugs can be used to shift potassium into the cells and protect cardiac function. (The use of any medication should be under the guidance of a doctor.)

Other Voices

doctor image
home-news-image
Written by Chen Li Ping
Endocrinology
53sec home-news-image

Why should calcium be supplemented for hyperkalemia?

When high potassium levels trigger ventricular automaticity, it is recommended to administer calcium to counteract its cardiotoxicity. This is because during hyperkalemia, the excitability of the myocardium significantly increases. Calcium ions do not affect the distribution of potassium inside and outside the cells, but they can stabilize the excitability of the heart. Therefore, even if a patient's blood calcium level is normal, calcium should be injected immediately when there is severe arrhythmia. Calcium ions only temporarily counteract the toxicity of potassium to the heart and do not reduce the concentration of potassium in the blood. Thus, they can only serve as a short-term emergency medication. (Medication should be used under the guidance of a doctor.)

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
1min 5sec home-news-image

Treatment of Hyperkalemia with Drugs

Hyperkalemia primarily affects the conduction of the heart and muscle nerves, with typical clinical manifestations including severe bradycardia, atrioventricular block, and even sinus arrest. Once hyperkalemia occurs clinically, immediate treatment should be administered. The first approach to treatment is promoting the excretion of potassium, using furosemide or other diuretics to increase renal potassium excretion, and taking a small dose of sodium polystyrene sulfonate orally to eliminate potassium. For life-threatening severe hyperkalemia, if serum potassium is greater than 6.5 mmol/L, hemodialysis treatment is necessary. The second aspect involves shifting potassium into cells, using calcium to alter cell excitability, which can protect the heart from the damage to the conduction system caused by hyperkalemia. Additionally, using glucose with insulin and administering sodium bicarbonate can be effective. It is important to note that all the above medications should be used under the guidance of a doctor.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
1min home-news-image

The impact of hyperkalemia on the heart

The effects of hyperkalemia on the heart mainly manifest in the following ways: First, it affects the excitability of the myocardium, as hyperkalemia can cause reduced or even absent myocardial excitability; second, it impacts myocardial conductivity. In hyperkalemia, due to the reduced resting potential, the amplitude and speed of the action potential's phase zero decrease, leading to slowed excitability spread and reduced conductivity; third, it influences the automaticity of the myocardium. In hyperkalemia, due to slowed automatic depolarization, the automaticity is reduced. Additionally, hyperkalemia produces characteristic changes in the electrocardiogram, such as depression or disappearance of the P wave, prolongation of the PR interval, widening of the S wave, and narrowing and peaking of the T wave, which are the main changes in the electrocardiogram due to hyperkalemia.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
34sec home-news-image

Does hyperkalemia cause a fast or slow heart rate?

Hyperkalemia often causes a slowed heart rate and is associated with various arrhythmias. When serum potassium is between 6.6 to 8.0 mmol/L, tented T-waves may be observed. When serum potassium levels rise rapidly, it can lead to ventricular tachycardia or even ventricular fibrillation. On the other hand, a slow increase in serum potassium can cause conduction blocks, and in severe cases, may lead to cardiac arrest. These are the heart rate changes caused by hyperkalemia, which typically result in a slower heart rate.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
56sec home-news-image

What are the causes of hyperkalemia?

Hyperkalemia, with blood potassium levels greater than 5.5 mmol/L, commonly occurs due to decreased potassium excretion or abnormal potassium transport within cells, as well as other reasons such as excessive intake. Decreased potassium excretion can commonly be due to renal failure, the use of potassium-sparing diuretics, renal tubular acidosis, and reduced secretion of corticosteroid aldosterone. Abnormal potassium transport includes conditions such as acidosis, rhabdomyolysis, extensive burns, severe trauma, intestinal necrosis, and peritoneal bleeding, among other diseases. Excessive potassium intake can be due to sample hemolysis or an elevation in white blood cells, both of which can lead to hyperkalemia. Therefore, it is crucial to be vigilant in clinical settings and address the condition promptly and appropriately.