Hypokalemia is a condition.

Written by Wei Shi Liang
Intensive Care Unit
Updated on September 06, 2024
00:00
00:00

Potassium is one of the essential electrolytes for life. Its physiological functions mainly include maintaining cellular metabolism, regulating osmotic pressure, acid-base balance, and maintaining cell stress functions. The human body intakes about 100 millimoles of potassium each day, of which 90% is excreted through the kidneys, and the remainder is excreted through the gastrointestinal tract. Potassium mainly exists inside cells, with serum potassium accounting for only 2% of the total potassium in the body. The concentration of potassium in serum is between 3.5 to 5.5 mmol/L. If the concentration of serum potassium is below 3.5 mmol/L, it is considered hypokalemia, which is often due to insufficient potassium intake or excessive potassium excretion.

Other Voices

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
1min 19sec home-news-image

Hypokalemia can cause

Hypokalemia can manifest as weakness, a bitter taste in the mouth, lack of appetite, irritability, or mood swings. In severe cases, symptoms like nausea, vomiting, drowsiness, reduced orientation ability, and confusion may occur. In terms of muscle and nerve effects, hypokalemia leads to decreased neuromuscular excitability, and when blood potassium levels fall below 2.5mmol/L, clinical symptoms of muscle weakness appear. If blood potassium levels drop below 2.0mmol/L, flaccid paralysis and disappearance or weakening of tendon reflexes may occur. In severe cases, paralysis of the respiratory muscles and even respiratory failure might develop. For the gastrointestinal tract, common symptoms include lack of appetite, nausea, and vomiting, with severe cases leading to intestinal paralysis. Hypokalemia can cause an increase in heart rate and even ventricular fibrillation, which can be fatal. Additionally, it can result in metabolic alkalosis. Hypokalemia can cause metabolic alkalosis, and vice versa, with each condition potentially leading to the other, often coexisting simultaneously.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
1min home-news-image

Clinical symptoms of hypokalemia

Hypokalemia has diverse clinical manifestations. The most life-threatening symptoms involve the cardiac conduction system and the neuromuscular system. In mild hypokalemia, the electrocardiogram (ECG) shows flattened T waves or their disappearance, along with the appearance of U waves. Severe hypokalemia can lead to lethal arrhythmias, such as ventricular tachycardia, ventricular fibrillation, or sudden death. In the neuromuscular system, the most prominent symptoms of hypokalemia are in the skeletal muscle, presenting as sluggish paralysis and loss of tone in the smooth muscle, leading to rhabdomyolysis. If respiratory muscles are affected, it may result in respiratory failure. Hypokalemia can also cause insulin resistance and obstruct insulin release, leading to significant glucose tolerance abnormalities. Decreased potassium excretion reduces the kidney's ability to concentrate urine, resulting in polyuria.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
1min 10sec home-news-image

Can people with hypokalemia smoke?

Hypokalemia is not directly related to smoking. However, once hypokalemia occurs, there is definitely an underlying disease. In the case that the primary disease is not controlled, it is advisable to avoid smoking. Potassium is an essential electrolyte for life, and its physiological functions mainly include maintaining cellular metabolism, regulating osmotic pressure, acid-base balance, and maintaining cell stress functions. Once hypokalemia occurs, active treatment should be implemented, primarily addressing the primary disease, symptomatic treatment with potassium supplementation, and avoiding the occurrence of hyperkalemia. The principle of potassium supplementation is that for mild hypokalemia without clinical manifestations, oral potassium should be given; in cases of severe hypokalemia, intravenous potassium supplementation should be administered immediately. Intravenous potassium should ideally not use peripheral veins but establish a central vein, and the speed of potassium supplementation and the monitoring of potassium levels should be controlled.

doctor image
home-news-image
Written by Wang Li Bing
Intensive Care Medicine Department
44sec home-news-image

How to treat hypokalemia?

After the occurrence of hypokalemia, there are generally two methods of potassium supplementation clinically. The first is oral potassium supplementation, which is relatively safe, and one can also eat fruits or vegetables rich in potassium. The second method is intravenous potassium supplementation. The first thing to note with intravenous supplementation is the patient's urination status. If the patient’s urination is normal, potassium chloride can be administered intravenously but must be diluted. In clinical practice, the concentration of intravenous potassium chloride generally does not exceed 0.3%, so we must pay attention to the concentration during potassium supplementation.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
51sec home-news-image

How to radically cure hypokalemia?

Hypokalemia must be treated with potassium supplementation while simultaneously addressing the primary condition. For mild hypokalemia, oral potassium can be given in doses of 40 to 80 mmol/day. In cases of severe hypokalemia, where blood potassium is less than 2.0 mmol/L or when life-threatening symptoms are present, intravenous potassium should be administered at a rate of 10 to 20 mmol/L per hour. Regular monitoring of blood potassium levels is necessary, especially in cases of renal dysfunction and cellular uptake impairment. For life-threatening severe hypokalemia, potassium can be administered via central venous lines with close monitoring of blood potassium levels, and the infusion rate can reach up to 40 mmol/L, which can effectively cure hypokalemia.