Clinical manifestations of hyperkalemia

Written by Wei Shi Liang
Intensive Care Unit
Updated on September 04, 2024
00:00
00:00

The clinical manifestations of hyperkalemia mainly affect the cardiovascular system, often presenting with slowed heart rate and various arrhythmias. When the blood potassium level is between 6.6 and 8.0 mmol/L, a tent-shaped T-wave can be observed. Rapid increases in blood potassium can lead to ventricular tachycardia, and even ventricular fibrillation. A gradual increase in blood potassium can cause conduction blocks, and in severe cases, cardiac arrest. Sudden death in severe hyperkalemia is mainly due to ventricular fibrillation and cardiac arrest. The second aspect is symptoms related to the neuromuscular system. As the concentration of potassium ions in the extracellular fluid increases, the resting membrane potential drops, leading to muscle weakness and even paralysis, typically more pronounced in the lower limbs and extending upward along the trunk. In severe cases, some patients may experience difficulty in swallowing and breathing difficulties. Symptoms involving the central nervous system mainly include restlessness, confusion, and fainting.

Other Voices

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
45sec home-news-image

How to rescue hyperkalemia

Hyperkalemia must be dealt with immediately once it occurs. The usual treatments in clinical settings include promoting potassium excretion using furosemide or other loop diuretics to maximize renal potassium excretion, or using oral or rectal potassium-eliminating agents. For life-threatening hyperkalemia with serum potassium levels greater than 6.5 mmol/L, hemodialysis is necessary. Another approach is to facilitate the shift of potassium into cells, which is done through the administration of insulin with glucose, or sodium bicarbonate along with calcium gluconate that helps protect the myocardium, thus providing treatment and protective measures for hyperkalemia.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
59sec home-news-image

Common Causes of Hyperkalemia

Hyperkalemia is when the serum potassium concentration exceeds 5.5 millimoles per liter. Common causes include excessive potassium intake and large doses of potassium salts, which can lead to hyperkalemia, as well as the use of stored blood. Another cause is reduced potassium excretion; in patients with renal insufficiency, reduced urine output or anuria leads to decreased renal potassium excretion. If potassium supplementation is inappropriate at this time, or if potassium-sparing diuretics are used, severe hyperkalemia can occur. Another scenario is the leakage of intracellular potassium during respiratory and metabolic acidosis, where sodium ion exchange occurs in cells, hydrogen ions enter the cells, and potassium ions leak out to the extracellular space, which can lead to increased blood potassium. These are the common causes of hyperkalemia.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
42sec home-news-image

The effects of hyperkalemia on the body

Hyperkalemia affects the body mainly in three aspects. Firstly, hyperkalemia impacts muscle tissues, clinically manifesting as symptoms such as muscle tremors. Secondly, the effect of hyperkalemia on the heart primarily manifests as decreased excitability, conductivity, and automaticity of the myocardium. It affects electrocardiograms, characterized by a depressed P wave, widened QS wave, reduced R wave, and elevated T wave. Thirdly, hyperkalemia affects acid-base balance; during hyperkalemia, potassium efflux from cells can lead to metabolic acidosis, resulting in alkaline urine.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
1min home-news-image

The impact of hyperkalemia on the heart

The effects of hyperkalemia on the heart mainly manifest in the following ways: First, it affects the excitability of the myocardium, as hyperkalemia can cause reduced or even absent myocardial excitability; second, it impacts myocardial conductivity. In hyperkalemia, due to the reduced resting potential, the amplitude and speed of the action potential's phase zero decrease, leading to slowed excitability spread and reduced conductivity; third, it influences the automaticity of the myocardium. In hyperkalemia, due to slowed automatic depolarization, the automaticity is reduced. Additionally, hyperkalemia produces characteristic changes in the electrocardiogram, such as depression or disappearance of the P wave, prolongation of the PR interval, widening of the S wave, and narrowing and peaking of the T wave, which are the main changes in the electrocardiogram due to hyperkalemia.

doctor image
home-news-image
Written by Zhao Xin Lan
Endocrinology
46sec home-news-image

Clinical manifestations of hyperkalemia

The clinical manifestations of hyperkalemia are not specific. Early symptoms often include numbness in the limbs, sensory abnormalities, extreme fatigue, and muscle pain. In severe cases, there can be difficulties in swallowing, speaking, and breathing, paralysis of the limbs, and tendon reflexes may disappear. The central nervous system may show signs of restlessness, fainting, and confusion. Some may experience a slow heart rate, ventricular fibrillation, and in the most severe cases, it can lead to cardiac arrest. Other symptoms may include nausea, vomiting, diarrhea, and other gastrointestinal symptoms.