

Wei Shi Liang

About me
Graduated from Shanxi Medical University with a degree in Clinical Medicine in 2006, and has been working in the field of Critical Care Medicine ever since.
Proficient in diseases
Treatment of severe infections, ARDS, severe trauma, MODS, and other diseases.

Voices

The effects of hyperkalemia on the body
Hyperkalemia affects the body mainly in three aspects. Firstly, hyperkalemia impacts muscle tissues, clinically manifesting as symptoms such as muscle tremors. Secondly, the effect of hyperkalemia on the heart primarily manifests as decreased excitability, conductivity, and automaticity of the myocardium. It affects electrocardiograms, characterized by a depressed P wave, widened QS wave, reduced R wave, and elevated T wave. Thirdly, hyperkalemia affects acid-base balance; during hyperkalemia, potassium efflux from cells can lead to metabolic acidosis, resulting in alkaline urine.

What can be eaten with severe pancreatitis?
Patients with severe pancreatitis should not eat orally. Historically, suppressing pancreatic enzyme secretion by resting the intestines has been considered an important means of controlling the progression of acute pancreatitis. Currently, the implementation of early enteral nutrition is proposed. Early enteral nutrition should be administered via a jejunal tube, which is safer. The nutritional formulation should be chosen based on the patient's condition and intestinal tolerance. Initially, only glucose water may be used to allow the intestines to adapt to the nutrition. Early nutrition should use low-fat preparations containing amino acids or short peptides, because whole proteins entering the intestine directly without being digested by stomach acid can cause indigestion. As the condition enters the recovery phase, the feeding amount and rate can be gradually increased, and preparations containing whole proteins may be given.

The effect of hyperkalemia on the myocardium
The primary mechanism by which hyperkalemia causes arrhythmias is due to dysfunction of myocardial conduction, which is also related to various other factors such as other myocardial lesions, failure, and ionic states. The main impact on the myocardium is on its excitability; myocardial excitability can decrease or even disappear, and its conductivity is also affected, causing a reduction in conductivity. The effect on myocardial automaticity is a decrease in automaticity. Electrocardiographically, there are manifestations such as a low P wave, prolonged PR interval, and widened QRS complex without disappearance; these are some of the presentations of hyperkalemia.

The difference between hyperkalemia and hypokalemia
Potassium ions are one of the essential electrolytes necessary for human life. Their physiological functions include maintaining cell metabolism, regulating osmotic pressure and acid-base balance, and preserving cell emergency functions, among others. The normal concentration of serum potassium is between 3.5 and 5.5 millimoles per liter. If it falls below 3.5 millimoles per liter, it is categorized as hypokalemia. If it exceeds 5.5 millimoles per liter, it is categorized as hyperkalemia. Common causes of hypokalemia include insufficient potassium intake, excessive potassium excretion, and the shifting of potassium from outside to inside the cells. The main causes of hyperkalemia include increased intake or reduced excretion of potassium, as well as substantial movement of potassium from inside the cells to the outside. Whenever hyperkalemia or hypokalemia occurs, it should be actively managed.

Treatment of Hyperkalemia with Drugs
Hyperkalemia primarily affects the conduction of the heart and muscle nerves, with typical clinical manifestations including severe bradycardia, atrioventricular block, and even sinus arrest. Once hyperkalemia occurs clinically, immediate treatment should be administered. The first approach to treatment is promoting the excretion of potassium, using furosemide or other diuretics to increase renal potassium excretion, and taking a small dose of sodium polystyrene sulfonate orally to eliminate potassium. For life-threatening severe hyperkalemia, if serum potassium is greater than 6.5 mmol/L, hemodialysis treatment is necessary. The second aspect involves shifting potassium into cells, using calcium to alter cell excitability, which can protect the heart from the damage to the conduction system caused by hyperkalemia. Additionally, using glucose with insulin and administering sodium bicarbonate can be effective. It is important to note that all the above medications should be used under the guidance of a doctor.

Clinical symptoms of hypokalemia
Hypokalemia has diverse clinical manifestations. The most life-threatening symptoms involve the cardiac conduction system and the neuromuscular system. In mild hypokalemia, the electrocardiogram (ECG) shows flattened T waves or their disappearance, along with the appearance of U waves. Severe hypokalemia can lead to lethal arrhythmias, such as ventricular tachycardia, ventricular fibrillation, or sudden death. In the neuromuscular system, the most prominent symptoms of hypokalemia are in the skeletal muscle, presenting as sluggish paralysis and loss of tone in the smooth muscle, leading to rhabdomyolysis. If respiratory muscles are affected, it may result in respiratory failure. Hypokalemia can also cause insulin resistance and obstruct insulin release, leading to significant glucose tolerance abnormalities. Decreased potassium excretion reduces the kidney's ability to concentrate urine, resulting in polyuria.

Severe pancreatitis intestinal nutrition
In different stages of severe pancreatitis, the energy requirements vary. At the early onset of the disease, the principle of nutritional support is to provide the minimum metabolic substrates needed to maintain basic metabolic demands, correct metabolic disorders, and minimize protein loss to a reasonable level. Caloric provision should be between 20 to 25 kcal per kilogram per day. As the condition progresses, the focus of nutritional support gradually shifts towards increasing or balancing nutrient intake. Early intervention using jejunal tube feeding is considered safer. Formulas used should be tolerable by the intestines; initially, glucose water is used to help the intestines adapt to nutrition. Early use of low-fat formulas containing amino acids or short peptides is advisable. Additionally, whole proteins, after being digested by stomach acid and entering the intestines directly, may lead to poor absorption.

How to rescue hyperkalemia
Hyperkalemia must be dealt with immediately once it occurs. The usual treatments in clinical settings include promoting potassium excretion using furosemide or other loop diuretics to maximize renal potassium excretion, or using oral or rectal potassium-eliminating agents. For life-threatening hyperkalemia with serum potassium levels greater than 6.5 mmol/L, hemodialysis is necessary. Another approach is to facilitate the shift of potassium into cells, which is done through the administration of insulin with glucose, or sodium bicarbonate along with calcium gluconate that helps protect the myocardium, thus providing treatment and protective measures for hyperkalemia.